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Abstract

Critical periods are specific periods in the
development of a living organism during
which there is an increased sensitivity to
external perturbations. Such perturbations
result in a developmental trajectory signifi-
cantly different from what is considered the
norm. This paper is concerned with the ques-
tion of whether the presence and timing of
a critical period can be predicted from the
developmental profile without perturbation.
Taking rate of change as a measure of this pro-
file, we put forward the hypothesis that criti-
cal periods will occur when the rate of change
is greatest. Using a simplified model of differ-
ential gene expression, cellular mechanics and
evolution, we evolve organisms with different
developmental profiles, test the presence of
critical periods by systematically exposing the
developing system to an external perturbation
at different times between runs, and correlate
the timing of these critical periods with the
proposed developmental measure. We discuss
the implications of our findings.

1. Introduction

In many respects, development can be defined as a
series of transitions between structures of increas-
ing complexity. This is especially true in the early
stages of development when, in the space of just a
few weeks, the fertilised egg goes from single cell to
highly differentiated embryo through mitotic cell di-
vision. In this paper, our focus is on critical periods,
that is, periods during development in which the de-
veloping system is unusually sensitive to some per-
turbation. The existence of critical periods is well
documented in developmental biology and is one of
Wilson’s six principles of teratology (Wilson, 1973).
Critical periods are reported in different organisms
and in response to different types of perturbation.
For example, exposure to ionizing radiation in early

human organ development has been shown to inter-
fere with cell signalling and disrupt normal cell dif-
ferentiation (Anderson et al., 2000). In Zebrafish,
exposure to a micro-gravity environment between 24
and 72 hours post fertilisation causes deficiencies in
the vestibular system (Moorman et al., 2002).

Development, especially cellular development and
morphogenesis, can be viewed as the product of com-
plex interactions among many components. A useful
perspective from which to consider the problem of
critical periods is that of Waddington’s epigenetic
landscapes. Waddington was perhaps the first sci-
entist to adopt a dynamic systems perspective of
development, understanding that genes do not en-
code phenotypes, but rather, through interaction
with each other and the environment encode a pro-
cess from which phenotypes emerge. Waddington
(1943) used the analogy of a landscape to visually
depict development. Evolution, he argued, sculpts
the landscape to stabilise some developmental tra-
jectories and remove others. Using his analogy, genes
are pictured as pegs that are connected to an over-
head, flexible ‘canvas’ by guy-ropes. The guy-ropes
represent gene interaction, and pull on the canvas to
create a landscape featuring valleys and hills through
which a ball, that represents the developmental pro-
cess, can roll (Figure 1). The ball will naturally fol-
low the valleys in the landscape, at the end of which
are particular phenotypes, for example red or white
eyes in Drosophila. However, as the ball rolls through
the landscape it is susceptible to environmental per-
turbations which cause the decending ball to change
trajectory (bifurcate) by rolling into different valleys.
Taking critical period as such a bifurcation, we hy-
pothesise that critical periods correlate with greatest
rate of developmental change.

Models of Natural Development
The model described in this paper draws inspira-

tion from the many examples of developmental mod-
els in the Artificial Life and Adaptive Systems litera-
ture. Bongard and Pfeifer implemented genetic reg-



Figure 1: Waddington’s epigenetic landscape. The right

panel shows a view of the landscape from below with

pegs representing genes and guyropes representing gene

interactions.

ulatory networks (GRNs) to grow complete agents –
morphology as well as neural control system (Bon-
gard and Pfeifer, 2001, 2003). They evolved agents to
perform some pre-defined task such as reaching and
moving a block, or moving across a flat plane. The
body was made of spherical units that could grow,
divide and attach to six other body units via simu-
lated joints. They were controled by a neural net-
work that grew with the body. Eggenberger (1997)
studied morphogenesis by utilising a GRN to control
the functions of simulated cells. Stewart et al. (2005)
also used a GRN to study morphogenesis. Stewart
and colleagues controlled cellular functions with pro-
tein concentrations produced by the GRN. The cells
could divide, die, change the direction they were fac-
ing and communicate with each other using protein
diffusion gradients. Stewart and colleagues hand-
designed the GRN and found several strategies for
developing different kinds of cell structures.

Whilst all of these studies investigated develop-
ment, and specifically morphogenesis, none of them
mentioned or discussed the presence of critical pe-
riods. However, Bongard and Pfeifer (2003) did re-
port that mutations expressed earlier in development
tended to have a larger effect on the final agent,
which could be related to a critical period in the
agents development.

Aims
The aims of this study are two-fold. The first aim

is to show that critical periods do occur in the type
of complex dynamical systems typically used in sim-
ulations of natural development. This, as far as the
authors are aware, is a novel piece of research and
is important because of the potential for critical pe-
riods to confound research results and conclusions.
The second aim is an extension on the positive out-
come of the first. If critical periods do occur, then
how does one predict the timing of their presence
within the developmental process? In recent years
artificial development and morphogenesis have been
employed to create both virtual and real-life robots,
this trend is likely to continue. Critical periods rep-
resent specific windows of time in which a developing

system is highly sensitive to perturbation. For those
who use artificial development and morphogenesis to
create complex systems - such as robots - predict-
ing these periods is not only useful for the succesful
prevention of developmental failure but also in the
analysis of experimental results.

2. Method

2.1 The Model

The simulation presented in this paper models the
early stages of embryonic development. Specifi-
cally, it models the development of cellular structures
(morphogenesis) and cell differentiation. The model
is formed of two components, the genetic component
and the cellular component. The genetic component
simulates gene expression and genetic regulation by
use of a Genetic Regulatory Network. Artificial tran-
scription factors and proteins are synthesised that
excite and inhibit genes in the network. The cel-
lular component simulates several cell functions that
make it possible to grow cellular structures composed
of cells of different types. These functions are con-
trolled by specific proteins created by the genetic
regulatory network. The model exists in 3D space
allowing for complex 3D structures to emerge over
a fixed time period. There is a constant amount of
energy in the system that cells consume so that en-
ergy consumption is a limiting factor that stops the
physically impossible scenario of infinite growth.

Artificial evolution is used to create genomes that
develop an organism of specific structure. Since dif-
ferent developmental profiles are needed to establish
the generality of any finding, genome size is varied
to allow organisms to develop differently into their
final structure. Hand-designing the genomes would
provide more control over the developmental profile
of each organism, however, in practice it is difficult
and time consuming.

2.2 Genetic Component

In nature, genes are responsible for creating proteins
through genetic transcription. Special molecules (ri-
bosome) translate genetic code into strings of amino
acids which fold into proteins. Proteins are required
in all cellular functions, but some proteins – called
transcription factors – affect the transcription of
genes in the genome. Transcription factors bind to
the promoter region of genes that are sensitive to
them. Once bound the transcription factor either
increases or decreases the likelihood that the gene
gets transcribed. This is the basic mechanism by
which genes interact with one another; the synthesis
of a transcription factor by one gene can affect the ex-
pression of all other genes in the genome. It is this in-
teraction that the genetic component aims to model.



The genome in this model is represented by nodes
that are interconnected with directed, weighted con-
nections as shown by Figure 2.

Figure 2: Representation of a genome: The nodes rep-

resent genes (dashed lines represent regulatory genes,

solid lines represent structural genes) and the directed

weighted connections represent the promoter regions of

the nodes they are connecting to.

Each gene in the network is characterised by sev-
eral variables: an activity y, a time-constant τ , a bias
θ, and a type. Genes can be one of two types, struc-
tural genes or regulatory genes. The activity of the
gene represents how much protein it is producing. If
it is a structural gene then the protein controls some
cellular function as well as influencing other genes in
the network. Several structural genes can control the
same function but a single structural gene can only
control one function. If it is a regulatory gene then it
can only influence other genes. The simulation was
run for a fixed number of time steps, and at each time
step every node in the network was simultaneously
updated according to the following equation:

dyi
dt

=
1
τ

(
−yi + E

∑
wj,iσ (yj + θj) + I

)
(1)

with
σ (y + θ) =

1
1 + e−(y+θ)

(2)

where E is the energy in the system, wj,i is the weight
of the connection between node j and node i, and I
is the external input into the node. The function σ
is a sigmoid function of the jth node’s activity. If
the gene is structural, and its activation rises above
a predefined threshold value (2.5), then the cellular
function that the genes product controls is activated.
All cellular functions are performed over a predefined
number of time steps (between 2 and 10 depending
on the function) during which all structural genes
that control the function receive a strong negative
input which represents protein consumption. These
time spans have no biological meaning and were ar-
bitrarily selected.

Equation 1 shows the genome’s activity to be de-
pendent on the energy in the system. Energy was
kept constant and evenly distributed between every

cell in the organism. Therefore, the energy received
by each cell decreased with the introduction of more
cells to the organism.

2.3 Cellular Component

The cells in the model are spheres situated in an infi-
nite 3D universe. All cells have the same radius (0.5
units) and can perform the same functions. In na-
ture cells perform many different functions which are
dependant on the type of cell they are. In this model
only basic functions that are related to morphogen-
esis are simulated. The functions are as follows:

Cell Division: When a cell divides it makes a copy
of itself and places the copy one and a half radius
lengths away from its centre position in the direc-
tion of its mitotic spindle (described below). If that
location is already occupied then no daughter cell is
produced. The daughter cell’s genome is initialised
with the values of its mother cell. It also inherits the
mitotic spindle orientation from its mother. This
function takes 10 time steps to complete.

Cell Death: The cell is removed from the universe
freeing up a location for another cell to divide into.
This function takes 5 time steps to complete.

Figure 3: The 12 directions in which the mitotic spindle

can point.

Cell Spindle and Cell Orbit: The cell’s mitotic
spindle points to one of twelve positions on the cell’s
surface (see Figure 3). The twelve positions are the
corners of three mutually orthogonal squares cen-
tred at the cell’s centre. The spindle location can
be changed in one of two ways. Firstly the spindle
location can be moved forward or backward one po-
sition on the same orbit, in which case the spindle



is moved to the next corner of the square it is cur-
rently on. Secondly the orbit can change, in which
case the spindle moves to the same corner of the next
square. Both of these functions require 2 time steps
to complete.

Cell Signalling: Cell signalling is the principal
mechanism by which cells differentiate and organise
themselves into sub populations. Cells use concen-
tration gradients of morphogens – proteins that can
diffuse through cell membranes and induce signal re-
sponses in other cells – to provide spatial information
to cell populations. Morphogens induce or suppress
the expression of genes at different concentration
thresholds, changing the dynamics of the genome
within the receiving cell. This causes cells to perform
different functions, or the same functions at different
frequencies, to each other depending on their spatial
location. Wolpert et al. (2007) showed how a pop-
ulation of hypothetical cells can differentiate using
concentration gradients of morphogens to resemble a
French flag. Since a cell requires three concentration
gradients to pinpoint itself in 3D space, in this model
cells can produce three morphogens. Morphogen dif-
fusion is simulated by using a 3D Gaussian function
centred at the position of the cell from which it orig-
inates:

a =
1√

(2vπ)3
e
−

1
2
‖~c− ~n‖2

v (3)

where c is the current cell’s position, n is the neigh-
bouring cell’s position and v is the gaussian func-
tion’s variance.

At each time step the variance of the Gaussian
function is increased until either the concentration
of the morphogen falls to zero or the signal function
is performed, in which case the variance is set back
to its initial value. When a signal function is per-
formed the corresponding morphogen concentration
is increased by a small amount every time step for
the duration of the function. As well as diffusing, all
morphogens decay until their concentration falls to
zero.

As well as being either a regulatory or structural
gene, genes can also be ‘input’ genes. At every time
step, each cell calculates the amount of morphogen
it receives from its neighbouring cells:

sm = cma (4)

where sm is the signal strength of morphogen m from
the neighbouring cell and cm is the concentration of
morphogen m.

This value sm is then fed into the input genes.
Signal functions require 10 time steps to complete.

Cells that perform different functions, or the same
functions at different frequencies, due to different dy-
namics in genetic regulation are considered to be dif-
ferent cell types. In this model, cell types are rep-
resented by the concentration of morphogens that
a cell is producing. The type is depicted visually
by colour. Each morphogen concentration maps di-
rectly to a channel in the RGB colour model with
red controlled by morphogen 1, green by morphogen
2, and blue by morphogen 3.

2.4 Evolution

To create genomes with different developmental pro-
files, we used an adaptation of the microbial genetic
algorithm (Harvey, 1996) to evolve genotypes satisfy-
ing a general enough fitness function. The algorithm
was as follows:

1. Create an initial random population of genomes.

2. Run each individual for a fixed number of time
steps.

3. Calculate each individuals fitness based on a pre-
specified fitness function.

4. Create a small sub-population (the elite popula-
tion) of the fittest individuals.

5. For each non-elite individual, select a random
elite and infect the non-elite with it.

6. Mutate the infected individual.

7. Repeat from step 2 for a fixed number of genera-
tions.

The genome for the evolutionary algorithm was
simply an encoded version of the Genetic Regula-
tory Network described earlier in this paper. The
network was encoded by a set of floating-point val-
ues in the range (-1, 1). This set was divided in
to equally sized subsets, one subset for each gene
in the network. An encoding for a single gene took
the form [function,morphogen, τ, θ, w0...wn] where
τ and θ represent the time-constant and bias of the
gene. The encoded values were scaled between (1.1,
10) and (-4, 4) respectively. Function and morphogen
encode the cellular function that the gene governs, if
any, and which morphogen that gene is sensitive to,
if any. These values map on to the function or mor-
phogen by dividing the full range (-1, 1) into equally
sized segments representing the cellular function or
morphogen respectively. An extra segment was in-
cluded to represent no cell function (regulatory gene)
and ’no morphogen sensitivity’ (see Figure 4). The
last set of values (w0 ... wn) encode the weights of
the gene to every other gene in the network including
itself. Therefore, if there are 9 genes in the Genetic
Regulatory Network there are 9 values in the set.
The weights were scaled between (-2, 2).



Figure 4: Mapping the gene encoding for cell function.

Several populations containing 40 individuals were
evolved using the same fitness function. In an at-
tempt to evolve organisms with different develop-
mental profiles, each population had a different num-
ber of genes. The fittest individuals from these popu-
lations were removed after 500 generations and used
in the experiments described in the results section.
Each individual in the population was run for 300
time-steps before its fitness was calculated. The fit-
ness function measured the affinity of the final organ-
ism to a target structure. A simple method was de-
veloped to specify arbitrary target shapes. By plac-
ing simple 3D shapes (spheres and cuboids) in the
virtual universe and assigning target cell types to
them, most structures could be specified. The par-
ticular target structure used for the fitness function
was a set of 5 concentric spheres with a gradated tar-
get type, from strongly blue (type 3) in the centre, to
strong green (type 2) on the outer most layer. Each
sphere had a radius that was 2 cell unit larger than
the sphere it encompassed, with the inner sphere be-
ginning with a radius of 2 cell units (see Figure 5).

Figure 5: Target structure of the fitness function. The

black sphere represents the zygote. The spheres are

shaded with the colour of their target cell type.

A collision test between a cell and every sphere
was performed to determine the sphere in which the
cell resided. The affinity ac of each cell to the en-
compassing sphere’s target type was computed by:

ac =
3bc(−1.5 + 2(|hc − hs|))√

c
(5)

where bc is the brightness of the cell’s colour, hc is the
hue of the cell’s colour, hs is the hue of the sphere’s
target colour and c is the number of cells in the or-

ganism. The normalisation by
√
c balances the fit-

ness attained by cell affinity to a target type and the
fitness gained by cell division. The total fitness f of
the organism was then simply defined as the sum of
each cells affinity plus a symmetry modifier:

f =
∑

ac + (1− ‖~m‖
d

) (6)

where m is the 3D centre of mass vector and d is the
maximum distance the centre of mass of an organism
could possibly travel within a developmental run. In
other words, the term in bracket encourages organ-
isms to grow in place rather than shift towards the
boundaries of the space.

Results and Discussion

Five genomes were evolved,with a genome size rang-
ing from 13 to 17 genes (hereafter referred to as
genomes 1 to 5 respectively). All produced organ-
isms with differentiated layers of cells roughly match-
ing those specified in the fitness function (i.e. blue
cells in the centre of the organism getting progres-
sively more green to the outer cell layer). Figure 6
shows snapshots of one of these organisms at differ-
ent stages of development.

Figure 6: Snap-shots at 50 time-step intervals of the de-

velopment of evolved genome with 15 genes.

2.5 Testing of critical periods

To locate critical periods in the development of these
organisms, 135 developmental runs of each organism
were performed. In each developmental run, the or-
ganism was subjected to a perturbation. This per-
turbation consisted of reducing the strength of cell
signalling by introducing a parameter p in Equation



4, thus:
sm = pcma (7)

This perturbation lasted for 30 time-steps, i.e., 10%
of the overall development. The fitness of the organ-
ism after development was then calculated. At each
new run, the window was moved along the develop-
mental run in 2 time-step increments. Ten series of
experiments were run for each organism with p vary-
ing between 0.05 and 0.5, i.e., a reduction of signal
strength between 50% and 95%.

For each organism, a developmental profile of the
organism without perturbation was obtained by com-
puting the absolute value of the rate of change of
the average activity of the GRN across all cells. A
critical period was defined as any drop in fitness of
more than 2 times its standard deviation. Likewise,
our hypothesis that critical periods correlate with
greater rate of change was tested by identifying pe-
riods in the developmental profile of the organism
when the rate of change was greater than 2 times its
standard deviation after discarding the period during
which the organism only had one cell – since the per-
turbation affects the signalling protein p, it cannot
have any bearing on the developmental profile of the
organism until after the first mitotic cycle. The cor-
relation between critical period and rate of change
was assessed using a test of cross-correlation, with
confidence intervals set to 5% 1. The test of cross-
correlation provides two elements of information: (a)
whether there is correlation between critical periods
and periods of greater rate of change, (b) an estimate
of the lag between critical period and rate of change.

2.6 Results

The middle panels (colour plots) in Figures 7 - 11
show raster plots resulting from the 10 runs in each
experiment. The y axis denotes the perturbation
strength p whilst the x axis (shared by the four
top panels) represents the onset time of the per-
turbation window (the perturbation itself lasting 30
time-steps). The value of the fitness function was
colour mapped on a red-to-white head-spectrum so
that light colours denote high fitness and red colours
denote low fitness. In each figure, the first (from the
top) and fourth panels show two related measures
of the organism’s development without perturbation.
The fourth graph shows the time-series of the activity
of each of the genes that control the 8 cellular func-
tions for each cell (’split’ for cellular division, ’death’
for cell death, ’sp FW’ for spin forward, ’sp BW’ for
spin backward, ’orbit’ for cell orbit, ’mrph i’ for the
i-th morphogen). The top graph shows the absolute
value of the rate of change of the average activity of

1These confidence intervals assumed uncorrelated series.
This assumption will be checked in the final manuscript, and
a more accurate estimate will be obtained using a Monte Carlo
significance test.

these genes. The dashed line (dotted line) denotes
two (one) standard deviations from the mean. The
second (from the top) panel of each graph represents
the number of cells in the organism through develop-
ment. The bottom graph displays the result of the
cross-correlation. Its x axis denotes the lag so that
peaks to the right of zero denote a lag of the criti-
cal period with respect to the rate of change. The
dotted blue lines denote the confidence interval.
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Figure 7: Results for the 13-gene organism. See text for

details.

As shown by Figures 7-11, 3 of 5 organisms dis-
play critical periods around the 150th time step (and
a second one for organism 2 around the 180th time
step). The loss of fitness correlates with the sever-
ity of the perturbation (the lower the p, the higher
intensity). Each critical period features a bar of in-
tense colour flanked by a gradient to the background
colour, showing that there is a focused period of time
(approximately 40 time-steps) during which the per-
turbation has a noticeable effect on the outcome of
development, and that this effect is reduced as the
onset time of the perturbation is moved away from
this period. The presence of these critical periods
is consistent with the working hypothesis of this pa-
per. A statistically significant correlation exists be-
tween the period of greater change of rate (as iden-
tified by the regions in which the rate of change is
greater than the threshold) and the critical periods.
The cross-correlation shows significant peaks, with
a lag within the window of the perturbation. As
shown by the fourth panel in each graph, the period
of greater rate of change is clearly associated with
marked changes of directions of some of the genes in
the regulatory network (e.g., gene ’sp BW’ in the 13-
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Figure 8: Results for the 14-gene organism. See text for

details.

gene organism, ’sp FW’ in the 14-gene and 15-gene
organisms). These findings are consistent with recent
findings in developmental biology that morphological
variables are non monotonous in time (Cherdantsev
and Tsvetkova, 2005).

Organisms 4 and 5 present a different picture. Nei-
ther of these genomes appear to have a critical period
similar to that observed in the first three organisms.
The absence of a critical period in organism 4 (Fig-
ure 10) is consistent with our working hypothesis.
As shown by the top graph, there are no statisti-
cally meaningful peaks in neither rate of change nor
cross correlation. Organism 5 exhibits a very irregu-
lar pattern of sensitivity to the perturbations early in
development (between 30 and 150 time-steps). Inter-
estingly, the cross-correlation reveals a statistically
significant correlation between these periods of sen-
sitivity and the developmental profile although none
of these peaks in rate of change are significant unless
a less stringent threshold of one standard deviation
is considered.

Why did organisms 4 and 5 not show any criti-
cal period. A possible answer could be that of the
genome size. Since evolution has more parameters
to tune for these genomes, more generations might
be needed to shape the developmental process. If
this explanation holds, it may suggest that critical
periods are not an inherent product of complex de-
velopmental systems, but rather the product of the
evolutionary process on these systems.
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Figure 9: Results for the 15-gene organism. See text for

details.

3. Conclusion

As an initial step in the study of critical periods,
the model described in this paper was deliberately
simple and therefore suffers from many limitations.
Firstly, the model is completely deterministic. This
limitation will be addressed by adding noise to gene
activity in the genetic regulatory network and in do-
ing so, increased statistical power will be obtained.
Secondly, the size of the perturbation window may
have been too large in this study. By reducing the
window size it may be possible to locate critical peri-
ods more precisely than we have in this paper (again,
increasing statistical power). There are several ques-
tions that needs answers: (a) will different types of
perturbations trigger different critical periods, with a
different timing? Will critical periods become more
defined and severe with more evolution? A simple
experiment for this would be to evolve one popula-
tion in increments of say, 100 generations, taking the
fittest individual from the population and investigat-
ing the critical periods in its development. Finally,
the study must be broadened to other developmental
processes.

Nevertheless, this paper has achieved both of its
aims by firstly showing that developmental models,
similar to those in the artificial life and adaptive sys-
tems literature, do indeed exhibit critical periods.
Secondly it has provided evidence of a correlation
between critical periods and developmental rate of
change. As such, it is a first step toward the goal
of a general method for predicting critical periods in
developmental systems. The ability to predict the
timing of critical periods would have broad impli-
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Figure 10: Results for the 16-gene organism. See text for

details.

cations not only in the clinical domain (in particu-
lar, the study of teratogens) but also in the study of
artificial developmental and adaptive systems. For
example, an intriguing question is whether the con-
troversial idea of critical periods in the acquisition
of language could be framed in terms of periods of
greatest rates of change in a model of language de-
velopment.
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